Menü Schließen
IMG_53151

Mathematik

Schülerinnen und Schüler sollen im Mathematikunterricht der Sekundarstufe I

  • Erscheinungen aus Natur, Gesellschaft und Kultur mit Hilfe der Mathematik wahrnehmen und verstehen (Mathematik als Anwendung)

  • mathematische Gegenstände und Sachverhalte, repräsentiert in Sprache, Symbolen und Bildern, als geistige Schöpfungen verstehen und weiterentwickeln (Mathematik als Struktur)

  • in der Auseinandersetzung mit mathematischen Fragestellungen auch überfachliche Kompetenzen erwerben und einsetzen (Mathematik als kreatives und intellektuelles Handlungsfeld).

Hierbei erkennen sie, dass Mathematik eine historisch gewachsene Kulturleistung darstellt. Zugleich erleben sie Mathematik als intellektuelle Herausforderung und als Möglichkeit zur individuellen Selbstentfaltung und gesellschaftlichen Teilhabe. Sie entwickeln personale und soziale Kompetenzen, indem sie lernen,

  • gemeinsam mit anderen mathematisches Wissen zu entwickeln und Probleme zu

  • lösen (Kooperationsfähigkeit als Voraussetzung für gesellschaftliche Mitgestaltung).

Verantwortung für das eigene Lernen zu übernehmen und bewusst Lernstrategien einzusetzen (selbstgesteuertes Lernen als Voraussetzung für lebenslanges Lernen).

Mathematische Grundbildung umfasst die Fähigkeit, die Rolle zu erkennen, die Mathematik in der Welt spielt, mathematisches Wissen funktional, flexibel und mit Einsicht zur Bearbeitung vielfältiger kontextbezogener Probleme einzusetzen und begründete mathematische Urteile abzugeben. Sie beinhaltet insbesondere die Kompetenz des problemlösenden Arbeitens in inner- und außermathematischen Kontexten. Grundlegend dafür ist die Fähigkeit, komplexe Probleme zu strukturieren sowie reale Probleme in geeigneter Weise mathematisch zu beschreiben, also Modelle zu bilden und zu nutzen. Ebenso gehört zur mathematischen Grundbildung die Fähigkeit, mit anderen über mathematische Fragestellungen zu kommunizieren, d.h. eigene Ideen zu präsentieren und zu begründen sowie die Argumente anderer aufzunehmen.

Diese Kompetenzen bilden sich bei der aktiven Auseinandersetzung mit konkreten Fragestellungen aus den Kernbereichen des Faches Mathematik heraus: Die Mathematik erfasst ebene und räumliche Gebilde mit Mitteln der Geometrie. Für die Operationen mit Zahlen in der Arithmetik hat die Mathematik die Formelsprache der Algebra entwickelt, mit der sich Gesetzmäßigkeiten des Zahlenrechnens darstellen und flexibel nutzen lassen. Zu den Leistungen der Mathematik gehört ferner, dass sie sowohl systematische Abhängigkeiten von Zahlen und Größen mit dem Begriff der Funktion, aber auch zufällige Ereignisse mit dem Begriff der Wahrscheinlichkeit beschreiben kann.

Mathematische Grundbildung zeigt sich also im Zusammenspiel von Kompetenzen, die sich auf mathematische Prozesse beziehen und solchen, die auf mathematische Inhalte ausgerichtet sind. Prozessbezogene Kompetenzen, wie z.B. das Problemlösen oder das Modellieren werden immer nur bei der Beschäftigung mit konkreten Lerninhalten, also unter Nutzung inhaltsbezogener Kompetenzen erworben und weiterentwickelt.

Die hier genannten Bereiche mathematischer Kompetenzen werden im Folgenden konkretisiert durch eine Beschreibung von Anforderungen am Ende der Sekundarstufe I (Kapitel 2) sowie durch eine Darstellung von Kompetenzerwartungen am Ende der jeweiligen Jahrgangsstufen (Kapitel 3). Diese Kernkompetenzen sollen Schülerinnen und Schüler nachhaltig und nachweislich erworben haben.

Die inhaltliche und methodische Gestaltung eines Unterrichts, in dem Schülerinnen und Schüler eine solche mathematische Grundbildung erwerben können, ist als Gesamtaufgabe aufzufassen. Inhalte und Methoden des Unterrichts sind eng aufeinander bezogen. Eine einseitig kleinschrittige Methodik, die entlang einer vorgegebenen Stoffsystematik eine Engführung der Lernenden betreibt, ist nicht geeignet, junge Menschen verständnisorientiert in mathematisches Denken einzuführen. Der Unterricht soll Schülerinnen und Schüler bei der Auseinandersetzung mit Mathematik unterstützen. Er soll hierzu eine breite Palette unterschiedlichster Unterrichtsformen aufweisen, die von einer lehrerbezogenen Wissensvermittlung bis hin zu einer selbstständigen Erarbeitung neuer Inhalte reicht. Zudem darf er sich nicht auf die nachvollziehende Anwendung von Verfahren und Kalkülen beschränken, sondern muss in komplexen Problemkontexten entdeckendes und nacherfindendes Lernen ermöglichen. Er sollte inner- und außermathematische Fragestellungen vernetzen und sich dabei an zentralen mathematischen Ideen (Zahl, Messen, räumliches Strukturieren, Algorithmus, Zufall) orientieren. Dieses Vorgehen erlaubt es auch, sich im Unterricht auf Wesentliches zu konzentrieren, ausgewählte Inhalte zu vertiefen und nach dem Prinzip der integrierenden Wiederholung bereits erworbene Kenntnisse und Fähigkeiten zu festigen und zu vertiefen.

(Quelle: https://bit.ly/30FmZtO)